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Abstract

A meshfree approach, called displacement boundary method, for anisotropic Kirchhoff plate dynamic analysis is

presented. This method is deduced from a variational principle, which uses a modified hybrid functional involving the

generalized displacements and generalized tractions on the boundary and the lateral deflection in the domain as in-

dependent variables. The discretization process is based on the employment of the fundamental solutions of the static

problem operator for the expression of the variables involved in the functional. The stiffness and mass matrices ob-

tained for the dynamic model are frequency-independent, symmetric and positive definite and their computation in-

volves boundary integrals of regular kernels only. Due to its features, the final resolving system can be solved with the

classical approaches by using standard numerical procedures. To assess the formulation, the free vibrations of some

anisotropic plates were calculated and the results compared with those obtained using other solution techniques. The

present results are in good agreement with those found in the literature showing the accuracy and effectiveness of the

proposed approach.
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1. Introduction

Composite materials are widely employed in the new lightweight structure technology for the con-

struction of many structural members such as multilayered plates and shells. Usually, these structures have
complex geometries and layups in order to meet specific design requirements and this leads to an aniso-

tropic global behavior, which is generally characterized by bending–stretching coupling. Then, the struc-

tural dynamic analysis plays a crucial role in the design and tailoring of this kind of structures in order to

obtain the desired response. In this context, for the widespread case of thin composite plate and shell-like

structures, the Kirchhoff theory provides a well established framework to accurately determine through-

thickness averaged quantities such as deflections, stress resultants, buckling loads and natural frequencies.
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Nomenclature

D, N, H generalized strain and equilibrium differential operators

E generalized elasticity matrix

f �
i companion solution

h plate thickness

K stiffness matrix

Mij (i; j ¼ 1; 2) bending and twisting moments

Mn boundary normal bending moment

Mnt boundary twisting moment
M mass matrix

NC number of corner points

NC2 number of corner points on the free boundary

N number of discretization nodes

NB, ND number of discretization nodes on the boundary and in the domain

N, W shape function matrices

Nwi, N/i (i ¼ 1; 2) deflection and rotation shape function matrices

p nodal generalized tractions
P� trial functions generalized tractions matrix

q plate transverse load

q�i trial function load

Q� trial functions load matrix

Teq Kirchhoff�s shear force
s trial functions coefficient vector
~tt generalized tractions on the plate boundary
~uu generalized displacements on the plate boundary
w plate deflection

w�
i trial function

W�, U� trial functions displacement matrices

xi (i ¼ 1; 2; 3) Cartesian coordinates

d nodal generalized displacements

d1, d2 constrained and free nodal generalized displacements

dC, dX boundary and domain nodal generalized displacements

C1, C2, C constrained, free and entire plate boundary
jij (i, j ¼ 1; 2) plate curvatures

lk fundamental solution eigenvalues

q plate density

r generalized stress vector

X plate domain
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Many authors have investigated this class of problems employing different techniques to describe and
determine the static and dynamic response of anisotropic plates under various conditions. For the dynamic

plate problem, both numerical and analytical solutions are available in the literature. Analytical solutions

are generally given in terms of series expansion and they are restricted to simple geometries and boundary

conditions (Hearmon, 1959; Lekhnitskii, 1968; Rossi et al., 1998; Kabir et al., 2001). Complex anisotropic

plate configurations have been treated by numerical methods and many solutions have been obtained by
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using the finite element method, which however has been developed for the analysis with higher order

theories particularly suitable for thick plates (Noor and Burton, 1989; Reddy and Robbins, 1994; Liew

et al., 1995). These finite element approaches require a fine mesh to obtain accurate results and this leads to

high computational costs especially in the solution of problems involving structural constraints such as
weight optimization and design limitations. From the beginnings, the boundary element method has been

employed for plate analysis and solutions are available for both isotropic and anisotropic plates (Wu and

Altiero, 1981; Irschik, 1984; Shi and Bezine, 1988; Providakis and Beskos, 1999). More recently, novel

computational algorithms, referred as ‘‘meshless’’ or ‘‘meshfree’’ methods, have been proposed. These

methods do not require a mesh for the interpolation of the solution variables but generally they involve

shadow elements for integration purposes only (Monaghan, 1982; Liszka, 1984; Kansa, 1990; Nayroles

et al., 1992; Belytschko et al., 1994, 1996; Liu et al., 1995; Zhu et al., 1999; Chati et al., 1999; Atluri and

Zhu, 2000; Zhang et al., 2002; Liew et al., 2002a,b,c,d,e). The above-mentioned feature alleviates the dif-
ficulty of meshing and remeshing the entire structure whose discretization characteristics are changed by

only adding or deleting nodes. Some of the proposed meshfree methods have been applied to plate analysis

and in particular the element-free Galerkin method (Krysl and Belytschko, 1995), radial basis functions and

Hermite collocation (Leitao, 2001) and the meshfree local boundary integral equation method (Shuyao,

2002). In the border between the boundary element method and the meshfree methods, the authors have

recently proposed a novel approach called displacement boundary method (DBM), which has been suc-

cessfully applied to 2D free and forced vibration analysis (Dav�ıı and Milazzo, 1994, 1997a) and to several

problems involving isotropic plate dynamics (Dav�ıı and Milazzo, 1997b; Dav�ıı et al., 1997). In the frame-
work of boundary element methods, the DBM represents a variational approach proposed in order to

preserve the fundamental properties of symmetry and definiteness of the structural operators, which are lost

in the classical boundary element method with the consequent theoretical and numerical drawbacks. On the

other hand, the inherent structure of the approach makes it a ‘‘meshfree’’ method because only a set of

scattered points is needed for the variable interpolation, whereas an underlying boundary mesh is used for

the integration of the influence coefficients only. In this paper a model for the dynamic analysis of thin

anisotropic plates is obtained when the DBM is used, which has been successfully applied to the static

analysis of orthotropic plates (Dav�ıı and Milazzo, 1999). The problem governing equations are obtained
from a hybrid functional originally proposed by De Figueredo and Brebbia (1989) for static elasticity

problems and extended to plate flexural problems by the authors (Dav�ıı and Milazzo, 1997b; Dav�ıı et al.,
1997). This hybrid functional is expressed in terms of the plate basic variables. On the boundary these are

the generalized displacements, i.e. deflection and normal slope, and the generalized tractions, i.e. normal

bending and Kirchhoff�s shear force per unit length, whereas in the domain the functional involves the

deflection only. These variables are assumed as independent of one another. The discretization process is

based on the modelization of the internal displacement field by a superposition of static fundamental

solutions of the anisotropic plate bending problem and the ensuing expressions for the boundary variables.
The resolving equations are deduced from the stationarity conditions of the functional and they constitute a

system of constant coefficients ordinary differential equations expressed in terms of nodal displacements.

The stiffness and mass matrices involved in the model are frequency-independent and they preserve the

symmetry and definiteness properties of the continuum. They are computed by running boundary inte-

grations of regular kernels. Due to its features, the resolving system is solvable by efficient standard

numerical procedures.
2. Definitions and basic equations

Consider a thin, anisotropic elastic plate and let its stretching and bending be uncoupled, e.g. symmetric
composite laminate (Vasiliev, 1993). Under these assumptions, the deflection mode behavior of the plate



Fig. 1. Plate configuration and notation.
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can be described on the basis of Kirchhoff�s small deflection theory. To this purpose, a rectangular Car-
tesian coordinate system (x1-, x2- and x3-axis) is considered to represent the plate geometry (see Fig. 1). The

x1–x2 plane is placed at the mid-surface of the plate of thickness h, while the axis x3 is normal to it. Again, let

X denote the region of the x1–x2 plane occupied by the plate middle surface, which is bounded by the

contour C having a constrained part C1 and a free part C2. The contour outer normal is denoted by n, and
let w ¼ wðx1; x2; tÞ be the plate deflection. From Kirchhoff�s theory of thin plates, the generalized strain–

displacement relation, that is the curvature–deflection relationship, is defined as
j ¼
j11

j22

j12

24 35 ¼ �Dw ð1Þ
where the jij (i, j ¼ 1, 2) are the bending and twisting curvatures and the operator D is given by
D ¼

o2

ox2
1

o2

ox2
2

2 o2

ox1ox2

2664
3775 ¼

o
ox1

0

0 o
ox2

o
ox2

o
ox1

264
375 o

ox1
o
ox2

" #
¼ NH ð2Þ
The corresponding generalized stresses are the usual bending moments around the x1- and x2-axes and the

twisting moment per unit length, which can be expressed as
r ¼
M11

M22

M12

24 35 ¼ Ej ð3Þ
The generalized elasticity matrix E is given by
E ¼
D11 D12 D16

D12 D22 D26

D16 D26 D66

24 35 ð4Þ
where the constants Dij are the bending and twisting rigidities that can be computed according to Lekh-
nitskii (1968) for both single-layer and multi-layer plates. By using the notation introduced above, the

equilibrium equation governing the plate motion is written as
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DTEDw ¼ q� qh€ww ð5Þ
where the right-hand side is the sum of the applied pressures q and the transverse inertia forces qh€ww. The
Eq. (5) is the anisotropic biharmonic equation, which characterizes the plate dynamic response in terms of

the transverse deflection w when the appropriate boundary and initial conditions are assigned. On the
constrained boundary C1, the kinematical boundary conditions are prescribed in terms of the boundary

generalized displacements u whose components are the deflection and the normal slope. One has
u ¼ w
� ow

on

	 

¼ �uu on C1 ð6Þ
where the overbar denotes prescribed quantities. On the free boundary C2, the mechanical boundary

conditions are prescribed in terms of the generalized traction vector t whose components are the Kirchhoff�s
shear force Teq and the normal bending Mn. They can be written as
t ¼ Teq
Mn

	 

¼ �tt on C2 ð7Þ
Moreover, for a plate with NC corners, the mechanical boundary conditions have to be supplemented by

the corner conditions
kMntki ¼ kMntki i ¼ 1; . . . ;NC2 ð8Þ
where NC2 is the number of free corner points and kMntki denotes the corner force due to the jump of the

twisting moment at the ith corner on C2. Finally, the deflection w is also subjected to the initial conditions

given by
wðx1; x2; 0Þ ¼ �wwðx1; x2Þ ð9Þ
_wwðx1; x2; 0Þ ¼ �_ww_wwðx1; x2Þ ð10Þ
3. Modified variational principle

The dynamic model presented is based on a modified variational principle (De Figueredo and Brebbia,

1989) whose form for plate bending analysis has been previously introduced by the authors for the isotropic

case (Dav�ıı and Milazzo, 1997b; Dav�ıı et al., 1997). In the following, the fundamentals of this variational

principle are recollected to apply it to anisotropic plates. Let w be the lateral deflection of the plate in the

domain X and let ~uu and ~tt be the boundary generalized displacements and tractions, respectively. The

functions w, ~uu and ~tt are assumed to be independent one from each other. The corresponding hybrid

variational functional for plates is defined as follows
P ¼
Z

X

1

2
jTEj

	
� wðq� qh€wwÞ



dX �

Z
C
ðu� ~uuÞT~ttdC �

Z
C2

~uuT�ttdC þ
XNC

i¼1

hðw� ~wwÞk ~MMntkii

þ
XNC2

i¼1

h~wwkMntkii ð11Þ
By carrying out the variations, after integrating by parts and taking the essential boundary conditions on C1

into account, it results
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oP ¼
Z

X
½DTEDw� qþ qh€ww�TowdX �

Z
C
ðu� ~uuÞTo~ttdC þ

Z
C
ðt�~ttÞToudC �

Z
C2

ð�tt�~ttÞTo~uudC

�
XNC

i¼1

hðkMntk � k ~MMntkÞowii �
XNC2

i¼1

hðk ~MMntk � kMntkÞo~wwii ð12Þ
where the notation h�ii indicates the value of the function at the ith corner point. The vanishing of oP, for

arbitrary variations ow in X, o~tt on C and o~uu on C2, gives the following set of Euler equations
DTEDw� qþ qh€ww ¼ 0 in X ð13Þ

~uu ¼ u on C ð14Þ

~tt ¼ t on C ð15Þ

~tt ¼ �tt on C2 ð16Þ

k ~MMntki ¼ kMntki i ¼ 1; . . . ;NC ð17Þ

kMntki ¼ kMntki i ¼ 1; . . . ;NC2 ð18Þ
Consequently, assuming that the compatibility equations (1) and the constitutive equations (4) are verified

and the boundary conditions (6) are identically satisfied, the solution of the plate problem is given in terms

of the functions w, ~uu and ~tt which make P stationary.
4. Functional discretization and plate dynamics model

In order to obtain a meshfree model for the plate dynamic problem by using the variational principle
previously described, consider a set of N nodes randomly chosen in which a part of those, namely NB, lies

on the plate boundary C whereas the other ND belong to the plate domain X (see Fig. 2). The domain

displacement field w, describing the plate flexural behavior, is approximated by means of a linear combi-

nation of time independent trial functions w�
i . The number of trial function employed for the approxi-

mation of the plate deflection is linked to the degrees of freedom introduced by the nodes, explicitly the
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Fig. 2. Discretization scheme.
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deflection for the ND domain nodes and the deflection and normal slope for the NB nodes belonging to the

plate boundary. Then, one has
w ¼
X2NBþND

i¼1

w�
i si ¼ W�s ð19Þ
where s is the vector of the unknown time dependent coefficients si ¼ siðtÞ and W� is the matrix of the trial

functions w�
i . The trial functions w�

i can be thought as the solutions in an infinite anisotropic plate cor-

responding to a static load q�i and thus, these solutions associated with the solutions in an infinite domain of

the equation
DTEDw�
i ¼ q�i ðx1; x2Þ ð20Þ
With this assumption, the generalized displacements on the boundary C can be expressed in terms of trial

functions as
u ¼ w
�ow=on

	 

¼ W�

�oW�=on

	 

s ¼ U�s ð21Þ
On the other hand, the boundary generalized displacement and traction variables are expressed as
~uu ¼ w
� ow

on

	 

¼ Nw1 Nw2

Nu1 Nu2

	 

d1

d2

	 

¼ N1 N2½ � d1

d2

	 

¼ Nd ð22Þ

~tt ¼
~TTeq
~MMn

	 

¼ Wp ð23Þ
where d is the vector of the generalized displacements associated with the N nodes of the discretization, p is
the vector of the nodal generalized tractions associated with the NB boundary nodes and N and W are

matrices of interpolants whose functional dependencies will be determined later. The subscripts 1 and 2

refer to constrained and free nodal displacements, respectively. By substituting these approximations for w,
~uu, and ~tt into Eq. (11), the expression of the discretized functional P for the plate is obtained. After inte-

grating by parts, the stationarity conditions of P with respect to the discrete independent variables s, d2 and

p yield the following set of equations
Z
C
U�TP� dC

 
�
XNC

i¼1

hW�TkM�
ntkii þ

Z
X
W�TQ� dX

!
sþ qh

Z
X
W�TW� dX€ss�

Z
X
W�TqdX

�
Z

C
U�TWdCpþ

XNC

i¼1

hW�Tk ~MMntkii ¼ 0 ð24Þ

Z
C
NT

2WdCp�
Z

C2

NT
2
�ttdC þ

XNC2

i¼1

hNT
w2kMntkii �

XNC

i¼1

hNT
w2k ~MMntkii ¼ 0 ð25Þ

Z
C

WTU� dCs�
Z

C
WTNdCd ¼ 0 ð26Þ
where P� is the matrix of the boundary generalized tractions associated with the trial functions w�
i whereas

the vector Q� contains the relative loads q�i . Eq. (26) can be satisfied independently from the choice of the
interpolant matrix W if it results
U�s ¼ Nd on C ð27Þ
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At this point, the relation between the coefficient vector s and the displacements of the points chosen for the

discretization process, i.e. the nodal displacements, can be established. Evaluating Eq. (27) at the nodal

points lying on the plate boundary, by virtue of the properties of the interpolants, one obtains the rela-

tionships between s and the generalized displacements dC of the boundary nodes
U
�
s ¼ dC ð28Þ
where the elements of the matrix U
�
are the values of the functional matrix U� computed at the boundary

nodes. In a similar way, collocating Eq. (19) at the internal nodes, a second set of relationships can be

established and it gives
W
�
s ¼ dX ð29Þ
In Eq. (29) the elements of the matrix W
�
are the values of W� calculated at the internal nodes and dX is the

vector collecting the displacements of the domain nodes. If the trial functions are chosen so as to be regular

and linearly independent, then the matrix
K ¼ U
�

W
�

	 

ð30Þ
is square and possesses an inverse U ¼ K�1. Therefore from Eqs. (28) and (29) one has
s ¼ K�1 dC

dX

	 

¼ U

dC

dX

	 

¼ UC UX½ � dC

dX

	 

¼ ½U1 U2 �

d1

d2

	 

ð31Þ
Eqs. (27) and (31) imply the following functional expression of the interpolant matrix N in terms of trial

functions
N ¼ U�K�1 ¼ U�U ¼ W�

� oW�

on

	 

U1 U2½ � ¼ Nw1 Nw2

Nu1 Nu2

	 

ð32Þ
Pre-multiplying Eq. (24) by UT
2 , by using Eqs. (25) and (31), and defining the stiffness matrix K and the mass

matrix M as
K ¼ UT
2

Z
C
U�TP� dC

 
�
XNC

i¼1

hW�TkM�
ntkii þ

Z
X
W�TQ� dX

!
U2 ¼ UT

2KU2 ð33Þ

M ¼ qhUT
2

Z
X
W�TW� dXU2 ¼ UT

2MU2 ð34Þ
one obtains the plate dynamic model
M€dd2 þ Kd2 ¼
Z

C2

NT
2
�ttdC þ

Z
X
NT

w2qdX �
XNC2

i¼1

hNT
w2kMntkii � UT

2MU1
€dd1 � UT

2KU1d1 ð35Þ
The present approach leads to a meshfree model as suggested by the structure of the resolving system

obtained. Indeed, the model proposed involves only the displacements of the nodal points introduced by

the discretization process of the functional, whereas the influence matrices, i.e. the stiffness and mass

matrix, are defined in terms of the trial functions. Their construction does not call for assembly procedures

based on a mesh definition. Moreover, the proposed approach evidences some interesting features pointed

out in the following. Due to the kind of trial functions employed, the matrices K and M are frequency-

independent. They are symmetric and positive definite (Dav�ıı and Milazzo, 1997b; Dav�ıı et al., 1997) and
then these two fundamental properties of the continuum, namely symmetry and definiteness of the struc-

tural operators, are preserved with the related theoretical and computational advantages.
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5. Displacement boundary method

The analysis of the discretization process and of the resulting model clearly indicates that the effec-

tiveness of the proposed approach is strictly correlated to the trial functions employed. In the boundary
models based on the proposed formulation (Dav�ıı and Milazzo, 1994, 1997b), the trial functions have been

chosen to be the static fundamental solutions in an infinite isotropic domain corresponding to point loads.

Accordingly, also in the present approach, the w�
i have been chosen to be the static fundamental solutions in

an infinite anisotropic plate corresponding to a point load and a point couple with magnitude c�i , applied at

the location Pi which is referred as the source point. Explicitly, the fundamental solution due to a point load

corresponds to the solution of the Eq. (20) for a load q�i defined as
q�i ¼ c�i dðP � PiÞ ð36Þ
where dðP � PiÞ denotes the Dirac�s function. The fundamental solution due to a point couple about an axis

orthogonal to the boundary outer normal n can be directly obtained applying the operator o=on to the

fundamental solution for the point load. These trial functions, namely the anisotropic plate fundamental

solutions, can be associated with the source points and so they become very well-suited for the meshfree

discretization process. In particular, according to Eq. (21), for the boundary nodes where there are two

unknown nodal generalized displacements, namely the nodal deflection and normal slope, both the fun-

damental solutions are defined with the same source point. On the other hand, at the internal nodes only

the fundamental solution due to a point load is considered as the nodal deflection is the sole unknown in
accordance with Eq. (19). The fundamental solutions are correlated to the nodal points basing on the

following criterion: for the fundamental solutions carried by the internal nodes the source point is chosen

coincident with the node whereas the source point of the fundamental solutions associated with boundary

nodal points is located outside the domain along the boundary outer normal at the node. This selection of

the fundamental solutions as trial functions leads to the DBM (Dav�ıı and Milazzo, 1997b) that can be

classified as a meshfree method with very appealing features. In fact, by employing the problem funda-

mental solutions and remembering the properties of integrals involving Dirac functions, the domain in-

tegral in the stiffness matrix definition (Eq. (33)) can be directly evaluated and the calculation of the stiffness
matrix requires only boundary integrations. Moreover, due to the choice of the source points, which do not

lie on the plate boundary, the kernels involve only non-singular functions having advantages in compu-

tation consequently. The other domain integral that appears in the definition of the mass matrix M can be

properly transformed so as to obtain a pure boundary model of the discretized plate. To this purpose,

consider a particular solution of the equation
DTEDf �
j ¼ HTNTENHf �

j ¼ w�
j in X ð37Þ
where w�
j is the jth fundamental solution. The functions f �

j are called companion solutions and they are

collected in the vector F. By applying the reciprocity theorem to the companion solution vector F and to the

fundamental solution vector W�, the matrix M can be expressed as
1

qh
M ¼

Z
X
W�TW� dX ¼

Z
X
W�THTNTENHFdX

¼
Z

C
½W�THT

nN
TENHF� ðHW�ÞTNT

nENHF�dC þ
Z

C
½ðNT

nENHW�ÞTHF

� ðHT
nN

TENHW�ÞTF�dC þ
Z

X
Q�TFdX ð38Þ
where the operators HT
n and NT

n are obtained from H and N by substituting the derivatives with the cor-

responding direction cosines of the boundary outer normal. Eq. (38), taking again the Dirac�s function
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properties into account for the evaluation of the domain integral on the right-hand side, allows one to

express the mass matrix in terms of boundary integrals. Performing the transformation above-described,

both the mass matrix and the stiffness matrix can be calculated through integration of regular kernels on the

boundary only, thus reducing the problem dimensionality and recovering a boundary character for the
approach. In conclusion, the dynamic model obtained for anisotropic plate is constituted by a set of linear

differential equations that exhibits the same features of the most common finite element dynamic resolving

systems, namely symmetry and definiteness. Therefore, for the numerical solution, the present DBM allows

the application of the standard procedures available for finite element models coupled with a meshfree

nature and boundary element computational advantages.
6. Fundamental and companion solutions

The anisotropic plate fundamental solutions due to point load and couple are an essential part of the

proposed method. Fundamental solutions for anisotropic plates make use of complex variable theory

according to Lekhnitskii (1968) and they have been presented by Suchar (1964) and Mossakowski (1995).

Here, the attention is focused on the point load fundamental solution because the point couple fundamental

solution follows from the former by proper differentiation with respect to the couple axis direction. The

considered fundamental solution is governed by the following equilibrium equation
DTEDw�
i ¼ c�i dðP � PiÞ ð39Þ
with the known meaning of the symbols. Observing that Eq. (39) is a homogeneous equation, except that at

the point Pi where the solution is singular, it admits particular solutions of the form
w ¼ 1

2
aðX1 þ lX2Þ2 lnðX1

	
þ lX2Þ �

3

2



ð40Þ
where l and k are complex constants to be determined and
Xk ¼ xkðP Þ � xkðPiÞ ðk ¼ 1; 2Þ ð41Þ

Substitution of Eq. (40) into Eq. (39) leads to the eigenvalue problem corresponding to the following

characteristic equation
HT
2N

T
2EN2H2l

4 þ 2ðHT
1N

T
2EN2H2 þ HT

2N
T
1EN2H2Þl3 þ ð2HT

1N
T
1EN2H2 þ 2HT

1N
T
2EN1H2 þ HT

1N
T
2EN2H1

þ HT
2N

T
1EN1H2Þl2 þ 2ðHT

1N
T
2EN1H1 þ HT

2N
T
1EN1H1Þl þ HT

1N
T
1EN1H1 ¼ 0 ð42Þ
where the matrices Hm and Nm (m ¼ 1; 2Þ are obtained from the operators H and N by setting the derivative

with respect to xm equal to one and replacing all the other terms with zeros. The solution of Eq. (42) gives

four eigenvalues lk that form conjugate pairs (Lekhnitskii, 1968). In the case of distinct eigenvalues, the

fundamental solutions are obtained by superposing four solutions of the form (40), associated with the

eigenvalues lk and one has
w�
i ¼

X4
k¼1

1

2
a�
ikðX1 þ lkX2Þ2 lnðX1

	
þ lkX2Þ �

3

2



ð43Þ
Without loss of generality, assuming that Im½lk� > 0 for k ¼ 1, 2, the deflection of the fundamental solution

can be also written as (LaMattina et al., 1998)
w�
i ¼

X2
k¼1

Re a�
ikðX1

	
þ lkX2Þ2 lnðX1

�
þ lkX2Þ �

3

2

�

ð44Þ
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In the case of multiple eigenvalues of Eq. (42), the material is called degenerate and the fundamental so-

lutions have different expressions depending on the eigenvalue order. The discussion of this case is out of

the scope of the present paper and the reader is referred to Lekhnitskii (1968) for the analysis of this topic.

The complex constants a�
ik are determined by enforcing the compatibility conditions, which recover the

single-value character of the deflection and of its x2-direction derivatives, and the equilibrium condition at

the source point. The vector a�
i collecting the coefficients a�

ik is then computed by
a�
i ¼

ai1

ai2

ai3

ai4

26664
37775 ¼

1 1 �1 �1

l1 l2 �l̂l1 �l̂l2

l2
1 l2

2 �l̂l2
1 �l̂l2

2

g1 g2 ĝg1 ĝg2

26664
37775

�1
0

0

0

c�i

26664
37775 ð45Þ
where the hat denotes the complex conjugate. In the previous expression, one has to set
gk ¼
2p

1þ l2
k

H
T

k N
T

kEN
1�

ffiffiffiffiffiffiffi
�1

p
lk

lk þ
ffiffiffiffiffiffiffi
�1

p
" #

ð46Þ
where the matrices Hk and Nk are obtained from the operators H and N by replacing the derivatives with

respect to x1 with one and the derivatives with respect to x2 with lk. It is worth to note that the present

fundamental solution has been derived using a suitable matrix notation, which is very advantageous for

computer implementation. According to the form of the fundamental solution given by Eq. (44) the cor-

responding companion solution can be expressed as
f �
i ¼ 2

X2
k¼1

Re½fkðX1;X2Þ� ð47Þ
where the functions fkðX1;X2Þ are particular solutions of the following equation
DTEDfk ¼
1

2
a�
ikðX1 þ lkX2Þ2 lnðX1

	
þ lkX2Þ �

3

2



ð48Þ
By defining the complex variables
Zk ¼ X1 þ lkX2 k ¼ 1; 2 ð49Þ
the Eq. (48) can be reduced to a set of two equations that are
ðlk � l̂lkÞ
2 ffiffiffiffiffiffiffi

D22

p o2nkðZk; bZZkÞ
oZkobZZk

¼ � 1

2
a�
ikZ

2
k ln Zk

�
� 3

2

�
ð50Þ

ðlk�ð�1Þk � l̂lk�ð�1Þk Þ
2 ffiffiffiffiffiffiffi

D22

p o2fkðZk�ð�1Þk ;
bZZk�ð�1Þk Þ

oZk�ð�1Þko
bZZk�ð�1Þk

¼ �~nnkðZk�ð�1Þk ;
bZZk�ð�1Þk Þ ð51Þ
where the function ~nnk is obtained from nk by expressing the variables Zk and bZZk in terms of Zk�ð�1Þk andbZZk�ð�1Þk by means of the following relationship
ZkbZZk

	 

¼ 1

lk�ð�1Þk � l̂lk�ð�1Þk

lk � l̂lk�ð�1Þk lk�ð�1Þk � lk

l̂lk � l̂lk�ð�1Þk lk�ð�1Þk � l̂lk

" #
Zk�ð�1ÞkbZZk�ð�1Þk

" #
¼ Ak

Zk�ð�1ÞkbZZk�ð�1Þk

" #
ð52Þ
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The Eqs. (50) and (51) can be sequentially integrated and employing Eq. (52) they provide the following

expression of the companion functions fk
fk ¼
1

720D22½Ak
11A

k
12ðlk � l̂lkÞðlk�ð�1Þk � l̂lk�ð�1Þk Þ�

2
ðAk

11A
k
22 þ Ak

12A
k
21ÞZ6

k

49

20
� ln Zk

� �	
� Ak

11A
k
12Z

5
k
bZZk

137

10
� 6 ln Zk

� �

þ bkZ

6
k ln Zk ð53Þ
where the coefficients Ak
mn are the elements of the matrix Ak. It is worth to note that, according to complex

function theory, the last term of Eq. (53) satisfies the homogeneous form of the problem governing

equation and it is added to ensure the regularity of the kernel involved in the mass matrix. For this purpose,

the coefficients bk are determined by enforcing the continuity of the companion solution and its derivatives

up to the third order on the Gauss plane.
7. Numerical examples and discussion

The present method is examined by applying the formulation to the analysis of anisotropic plates free

vibration, which is a fundamental issue of dynamic analysis. A computer code has been developed to
implement the formulation proposed, which follows these basic features: (i) The plate geometry, boundary

conditions and discretization are given in terms of boundary and domain nodes and to each node the

corresponding source point is associated (see Fig. 2). For the domain nodes, the source point matches the

node; the source points associated with the boundary nodes are obtained by locating the fundamental

solution source point outside the domain along the boundary outer normal at the nodal point. According

with Dav�ıı and Milazzo (1994), the ratio between the distance of the source point from the nodal point and

the distance between contiguous boundary nodes is chosen equal to 1. (ii) The generalized elasticity matrix

is computed and the fundamental and companion solutions are determined through Eqs. (44) and (47) after
the eigenvalue problem given by Eq. (42) was solved. (iii) The matrix U is computed by applying the

collocation procedure described in Eqs. (28) and (29); according to Eq. (31), the matrix U is suitably

partitioned taking the boundary conditions into account. (iv) According to Eqs. (33) and (38), the influence

matrices K and M are computed performing the required boundary integrations and calculating the re-

sidual domain integrals by using the Dirac�s function properties. The boundary integrations are numerically
Fig. 3. Convergence pattern of k vs. NB for the # ¼ 0� simply-supported plate with ND ¼ 81.



Fig. 4. Convergence pattern of k vs. ND for the # ¼ 0� simply-supported plate with NB ¼ 48.

Table 1

Free vibration frequency parameter k of ½#�/�#�/#�/�#�/#�� angle-ply, simply-supported square plates

Modea #

0� 15� 30� 45�

1 11.283 11.832 12.913 13.439

(11.29) (11.89) (13.10) (13.70)

[11.30] [11.82] [12.98] [13.61]

11.288

2 17.119 19.707 25.090 28.781

(17.13) (19.82) (25.36) (28.94)

[17.13] [19.76] [25.21] [28.75]

17.125

3 28.689 32.985 36.842 34.282

(28.69) (33.10) (37.15) (34.92)

[28.70] [32.93] [36.97] [34.68]

28.683

4 40.761 39.665 42.902 48.953

(40.74) (39.71) (43.13) (49.29)

[40.77] [39.53] [42.65] [48.90]

40.739

5 45.183 47.396 52.500 59.551

(45.16) (47.58) (53.18) (59.73)

[45.18] [47.42] [52.83] [59.25]

45.150

6 45.839 51.439 65.698 64.626

(45.78) (51.48) (65.97) (65.78)

[46.23] [52.73] [66.48] [65.34]

45.774

7 54.138 60.828 75.647 74.127

(54.08) (61.09) (75.87) (74.56)

[54.98] [61.11] [75.76] [74.28]

54.065

8 68.403 74.048 76.029 87.860

(68.14) (73.95) (76.57) (88.41)

[69.64] [74.08] [77.65] [88.86]

68.134

a The values in parentheses are adapted from Leissa and Narita (1989). The values in square brackets are adapted from Chow et al.

(1992). The values in italic are adapted from Vasiliev (1993).
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performed on shadow elements set on the plate boundary (see Fig. 2) by using standard 12-point Gaussian

quadrature. (v) Finally, the stiffness and mass matrices are computed and the dynamic model, namely

Eq. (35), is solved by standard numerical procedures for eigenvalue computation. By using the computer

code, graphite/epoxy plates have been analyzed to establish the applicability and effectiveness of the pro-
posed approach. The following properties have been adopted for the graphite/epoxy composite
Table

Free v

a Th

(1996)
EL=ET ¼ 15:4; GLT=ET ¼ 0:79; mLT ¼ 0:30
where EL is the Young�s modulus in the direction parallel to the fibers, while ET is the one orthogonal to the

fiber direction; GLT is the shear modulus in the lamina plane and mLT is the major Poisson�s ratio. To

demonstrate the soundness of the DBM for anisotropic plates, accuracy and convergence studies have been

carried out. Convergence analyses have been performed for square plates with side length a, thickness h and
½#�/�#�/#�/�#�/#�� layup. To investigate the effect of the degree of anisotropy on the solution accuracy,

different values of # have been considered and in particular # has been taken as 0�, 15�, 30� and 45�. All of

the plates have been analyzed for both simply-supported and clamped edge conditions on all four edges so

as to highlight the effect of the boundary conditions on the method effectiveness. The computations show

the fundamental convergence characteristics described in the following in terms of the frequency parameter
k ¼ xa2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12qð1� mLT mTLÞ

ELh2

s
ð54Þ
2

ibration frequency parameter k of ½#�/�#�/#�/-#�/#�� angle-ply, square plates with clamped edges

Modea #

0� 15� 30� 45�

1 23.717 23.452 22.772 22.429

(23.86) (23.46) (22.72) (22.40)

[23.852] [23.453] [22.713] [22.381]

2 29.599 31.513 36.659 41.754

(29.71) (31.48) (36.54) (41.64)

[29.715] [31.479] [36.546] [41.465]

3 41.672 45.889 54.263 48.498

(41.73) (45.80) (54.02) (48.32)

[41.721] [45.790] [54.012] [48.316]

4 60.241 60.579 57.369 65.370

(60.24) (60.38) (57.17) (65.09)

[60.229] [60.383] [57.156] [65.086]

5 62.895 66.333 70.551 78.094

(62.93) (66.47) (70.09) (77.76)

[62.974] [66.374] [70.079] [77.746]

6 67.432 68.316 83.646 84.591

(67.45) (67.96) (83.37) (84.06)

[67.462] [67.977] [83.369] [84.037]

7 76.536 81.930 95.811 94.299

(76.46) (81.36) (95.27) (93.58)

[76.448] [81.399] [95.269] [93.696]

8 84.446 91.963 101.18 109.89

(85.06) (92.42) (100.4) (109.00)

[85.051] [92.375] (100.37) [109.14]

e values in parentheses are adapted from Chow et al. (1992). The values in square brackets are adapted from Han and Petyt

.
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where x is the natural angular frequency. The convergence properties are not influenced from the degree of

anisotropy and from the position of the source points associated with the boundary nodes. For a fixed

number of internal nodes (ND ¼ constant) the convergence with respect to the number of boundary nodes

NB is monotonic, from below for all of the vibration modes. An example of this convergence pattern is given
in Fig. 3 for the # ¼ 0� simply-supported plate. Similar convergence patterns were obtained for different

number of internal points, for different stacking sequences and for different boundary conditions. For a

fixed number of boundary nodes (NB ¼ constant) the convergence with respect to the number of internal

nodes ND is monotonic, from above for all of the vibration modes. An example of this convergence pattern

is given in Fig. 4 for the # ¼ 0� simply-supported plate. Similar convergence patterns have been also ob-

tained for different number of internal points, for different stacking sequences and for different boundary

conditions. The examination of the convergence behavior above-described lead to the following conside-

rations. The rate of convergence and the accuracy of the proposed approach depend on the ratio between
Fig. 5. Mode shapes for five-layer graphite/epoxy simply-supported square plates with ½#�/�#�/#�/�#�/#�� layup.
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boundary and domain degrees of freedom. In particular, adding internal nodes unstiffs the plate, then one

has convergence from above, whereas increasing the number of boundary nodes makes the plate more stiff

and then one has convergence from below. Thus, a suitable choice of boundary and internal nodes affects

the convergence rate, though computations evidence accurate results for different ratios of boundary and
internal degrees of freedom. The accuracy of the approach has been firstly checked by comparing the

computed frequency parameter for square plate with exact and numerical solutions (Vasiliev, 1993; Leissa

and Narita, 1989; Chow et al., 1992; Han and Petyt, 1996). These results, shown in Tables 1 and 2, evidence

excellent agreement with the literature solutions confirming the accuracy and the excellent convergence

properties of the proposed method. This is able to determine the vibration frequencies with an error less

than 0.5% for all the considered boundary conditions and anisotropy degree of the plate. Figs. 5 and 6 show

the mode shapes of the analyzed plates. These mode shapes compare favorably with those presented in the

literature (Chow et al., 1992; Hung et al., 1993) and they show the ability of the approach to correctly
Fig. 6. Mode shapes for five-layer graphite/epoxy fully clamped square plates with ½#�/�#�/#�/�#�/#�� layup.
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predict this fundamental part of the dynamic behavior. Again, different plate shapes have been considered

to confirm the method capabilities. In particular some examples for trapezoidal, triangular and circular

plates have been analyzed and the results compared with those of Liew (1992, 1994) and Liew and Chiam

(1994). The computed vibration frequencies are shown in Tables 3–6 where the plate geometry and layup
Table 3

Natural frequency parameter k of cantilever trapezoidal plates

Modea c=a Layup

A B C D

1 2/5 3.56 3.57 3.32 2.99

(3.55) (3.59) (3.33) (2.96)

4/5 2.96 3.00 2.82 2.49

(2.96) (3.02) (2.96) (2.49)

2 2/5 8.68 11.27 11.28 12.01

(8.67) (11.25) (11.24) (12.02)

4/5 5.18 7.04 6.99 7.54

(5.18) (7.06) (6.98) (7.57)

3 2/5 18.58 18.85 17.47 15.39

(18.41) (18.72) (17.32) (15.38)

4/5 17.87 17.73 16.66 14.36

(17.60) (17.81) (16.49) (14.65)

4 2/5 27.02 31.28 32.13 32.31

(26.58) (31.39) (31.45) (32.44)

4/5 21.39 22.84 22.69 23.85

(20.94) (22.89) (23.63) (24.15)

5 2/5 38.65 39.02 39.25 39.46

(38.27) (42.79) (45.22) (40.91)

4/5 22.45 25.47 24.61 25.07

(22.33) (25.48) (23.63) (26.71)

6 2/5 49.94 50.24 44.70 46.66

(49.17) (49.41) (45.74) (47.89)

4/5 34.28 39.99 45.94 42.07

(33.96) (41.66) (46.15) (41.80)

a The values in parentheses are adapted from Liew (1992).

Table 4

Natural frequency parameter k of symmetrically five-layer cantilever isosceles triangular plates

Modea #

0� 30� 45� 60� 90�

1 1.808 2.416 3.795 4.915 6.418

(1.813) (2.423) (3.538) (4.925) (6.386)

2� 7.826 10.125 14.625 18.087 16.681

(7.870) (10.283) (14.490) (18.058) (16.479)

3 10.321 17.200 20.536 23.036 27.318

(10.320) (17.263) (20.540) (23.078) (27.094)

4 18.995 24.975 35.921 42.601 39.307

(19.157) (25.403) (35.896) (42.499) (38.624)

5 26.064 39.891 47.900 53.879 46.562

(26.043) (40.393) (47.699) (53.674) (45.747)

6 35.061 47.590 62.772 59.245 67.896

(35.401) (48.337) (62.215) (59.283) (65.880)

a The values in parentheses are adapted from Liew and Chiam (1994).



Table 5

Natural frequency parameter k of symmetrically five-layer cantilever right triangular plates

Modea #

0� 30� 45� 60� 90�

1 1.678 2.192 3.072 3.944 5.319

(1.677) (2.196) (3.037) (3.980) (5.282)

2� 7.072 9.197 12.312 14.489 13.703

(7.071) (9.245) (12.303) (14.458) (13.563)

3 10.874 15.751 19.485 22.890 26.810

(10.867) (15.868) (19.278) (22.719) (26.724)

4 17.506 22.261 28.826 30.743 30.391

(17.495) (22.410) (28.644) (30.614) (30.020)

5 26.315 33.616 40.462 46.671 45.268

(26.267) (34.204) (40.197) (46.401) (44.625)

6 33.385 42.789 53.605 55.308 56.114

(33.305) (43.233) (53.388) (55.031) (55.938)

a The values in parentheses are adapted from Liew and Chiam (1994).

Table 6

Natural frequency parameter k of symmetrically 16-layer clamped circular plates

Modea #

0� 15� 30� 45�

1 26.619 26.713 26.821 26.862

(26.354) (26.518) (26.718) (26.783)

2� 36.922 39.902 46.935 52.966

(36.680) (39.696) (46.788) (52.832)

3 52.097 57.978 63.385 58.569

(51.858) (57.755) (63.076) (58.416)

4 68.665 67.511 72.695 86.034

(67.775) (66.885) (72.476) (85.750)

5 72.323 81.167 93.078 92.831

(72.013) (80.843) (92.691) (92.552)

6 82.957 86.987 104.82 107.93

(82.086) (86.273) (104.44) (107.56)

a The values in parentheses are adapted from Liew (1994).
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characteristics are given for each case. Also these results show good agreement with those existing in the

literature. The computations performed underline the computational efficiency of the proposed approach as

compared to the other numerical methods. Indeed, focusing for example on the case of clamped rectangular

plates, the accuracy of the presented results has been obtained with 100 degrees of freedom and 40 shadow

boundary elements to compute the influence coefficients. By using conventional finite elements the same
level of accuracy can be obtained by using at least a double number of degrees of freedom and elements

(e.g. ANSYS results given in Han and Petyt, 1996). On the other hand, due to the reduction in the problem

dimensionality, the classical boundary element method allows to model the plate behavior with a number of

unknowns and elements similar to those of the present formulation. Nevertheless, it presents computational

complexities associated with singular kernels, lack of symmetry and definiteness of the structural operators

and resulting non-standard eigenvalue problems (Kitahara, 1985). The DBM, proposed in this paper, has

the dimensionality characteristic of a boundary element model and an high computational efficiency related

to a symmetric and definite standard resolving system whose influence coefficients are calculated by per-
forming boundary integrals of regular kernels only. In conclusion the presented examples prove the
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effectiveness of the proposed method whose features described in the previous sections make it very

appealing from the numerical and computational point of view.
8. Conclusions

A new meshfree method for anisotropic plate dynamics has been presented. The method is based on a

different view of the so-called DBM previously presented by the authors for isotropic plates in the
framework of the boundary elements approaches. The model derived in this paper presents many advan-

tages with respect to the more common field methods such as finite elements and finite differences and to the

classical boundary element methods. These advantages can be summarized as follows: (i) No connectivity is

needed because the discretization process is based on the employment of a set of randomly distributed

boundary and internal nodes. (ii) The formulation preserves the symmetry and definiteness properties of the

continuum in the discrete structural operators that is the stiffness and mass matrix are symmetric and

positive definite. (iii) The mass matrix is frequency-independent and due to the operators properties the

resolving system allows the employment of standard and computationally efficient numerical procedures.
(iv) The approach has the dimensionality of a boundary element model and it involves nodal displacements

only. (v) The method has meaningful computational advantages associated with the definition of the in-

fluence coefficients in terms of boundary integrals of regular kernels. (vi) The method is very suitable for

computer implementation. The method has been tested by performing the analysis on classical laminated

composite plates. These numerical examples have shown the accuracy and excellent convergence of the

results, which prove the effectiveness of the approach. The above-mentioned features are surely attractive so

that this method deserves consideration for the solution of problems involving anisotropic plate dynamics.
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